Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation.

Identifieur interne : 001080 ( Main/Exploration ); précédent : 001079; suivant : 001081

A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation.

Auteurs : T G Senkevich [États-Unis] ; C L White ; E V Koonin ; B. Moss

Source :

RBID : pubmed:11035794

Descripteurs français

English descriptors

Abstract

Proteins of the ERV1/ALR family are encoded by all eukaryotes and cytoplasmic DNA viruses for which substantial sequence information is available. Nevertheless, the roles of these proteins are imprecisely known. Multiple alignments of ERV1/ALR proteins indicated an invariant C-X-X-C motif, but no similarity to the thioredoxin fold was revealed by secondary structure predictions. We chose a virus model to investigate the role of these proteins as thiol oxidoreductases. When cells were infected with a mutant vaccinia virus in which the E10R gene encoding an ERV1/ALR family protein was repressed, the disulfide bonds of three other viral proteins-namely, the L1R and F9L proteins and the G4L glutaredoxin-were completely reduced. The same outcome occurred when Cys-43 or Cys-46, the putative redox cysteines of the E10R protein, was mutated to serine. These two cysteines were disulfide bonded during a normal virus infection but not if the synthesis of other viral late proteins was inhibited or the E10R protein was expressed by itself in uninfected cells, suggesting a requirement for an upstream viral thiol oxidoreductase. Remarkably, the cysteine-containing domains of the E10R and L1R viral membrane proteins and the glutaredoxin are in the cytoplasm, in which assembly of vaccinia virions occurs, rather than in the oxidizing environment of the endoplasmic reticulum. These data indicated a viral pathway of disulfide bond formation in which the E10R protein has a central role. By extension, the ERV1/ALR family may represent a ubiquitous class of cellular thiol oxidoreductases that interact with glutaredoxins or thioredoxins.

DOI: 10.1073/pnas.210397997
PubMed: 11035794
PubMed Central: PMC17295


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation.</title>
<author>
<name sortKey="Senkevich, T G" sort="Senkevich, T G" uniqKey="Senkevich T" first="T G" last="Senkevich">T G Senkevich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="White, C L" sort="White, C L" uniqKey="White C" first="C L" last="White">C L White</name>
</author>
<author>
<name sortKey="Koonin, E V" sort="Koonin, E V" uniqKey="Koonin E" first="E V" last="Koonin">E V Koonin</name>
</author>
<author>
<name sortKey="Moss, B" sort="Moss, B" uniqKey="Moss B" first="B" last="Moss">B. Moss</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000</date>
<idno type="RBID">pubmed:11035794</idno>
<idno type="pmid">11035794</idno>
<idno type="doi">10.1073/pnas.210397997</idno>
<idno type="pmc">PMC17295</idno>
<idno type="wicri:Area/Main/Corpus">001054</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001054</idno>
<idno type="wicri:Area/Main/Curation">001054</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001054</idno>
<idno type="wicri:Area/Main/Exploration">001054</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation.</title>
<author>
<name sortKey="Senkevich, T G" sort="Senkevich, T G" uniqKey="Senkevich T" first="T G" last="Senkevich">T G Senkevich</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892</wicri:regionArea>
<placeName>
<region type="state">Maryland</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="White, C L" sort="White, C L" uniqKey="White C" first="C L" last="White">C L White</name>
</author>
<author>
<name sortKey="Koonin, E V" sort="Koonin, E V" uniqKey="Koonin E" first="E V" last="Koonin">E V Koonin</name>
</author>
<author>
<name sortKey="Moss, B" sort="Moss, B" uniqKey="Moss B" first="B" last="Moss">B. Moss</name>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="ISSN">0027-8424</idno>
<imprint>
<date when="2000" type="published">2000</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Cysteine (metabolism)</term>
<term>DNA-Binding Proteins (chemistry)</term>
<term>DNA-Binding Proteins (metabolism)</term>
<term>Disulfides (metabolism)</term>
<term>Fungal Proteins (chemistry)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Mitochondrial Proteins (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Neoplasm Proteins (MeSH)</term>
<term>Open Reading Frames (MeSH)</term>
<term>Oxidoreductases Acting on Sulfur Group Donors (MeSH)</term>
<term>Saccharomyces cerevisiae Proteins (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Vaccinia virus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cadres ouverts de lecture (MeSH)</term>
<term>Cystéine (métabolisme)</term>
<term>Disulfures (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Oxidoreductases acting on sulfur group donors (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (MeSH)</term>
<term>Protéines de liaison à l'ADN (composition chimique)</term>
<term>Protéines de liaison à l'ADN (métabolisme)</term>
<term>Protéines fongiques (composition chimique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéines mitochondriales (MeSH)</term>
<term>Protéines tumorales (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Virus de la vaccine (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA-Binding Proteins</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
<term>DNA-Binding Proteins</term>
<term>Disulfides</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines de liaison à l'ADN</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Vaccinia virus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cystéine</term>
<term>Disulfures</term>
<term>Protéines de liaison à l'ADN</term>
<term>Protéines fongiques</term>
<term>Virus de la vaccine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Mitochondrial Proteins</term>
<term>Molecular Sequence Data</term>
<term>Neoplasm Proteins</term>
<term>Open Reading Frames</term>
<term>Oxidoreductases Acting on Sulfur Group Donors</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cadres ouverts de lecture</term>
<term>Données de séquences moléculaires</term>
<term>Oxidoreductases acting on sulfur group donors</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines mitochondriales</term>
<term>Protéines tumorales</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Proteins of the ERV1/ALR family are encoded by all eukaryotes and cytoplasmic DNA viruses for which substantial sequence information is available. Nevertheless, the roles of these proteins are imprecisely known. Multiple alignments of ERV1/ALR proteins indicated an invariant C-X-X-C motif, but no similarity to the thioredoxin fold was revealed by secondary structure predictions. We chose a virus model to investigate the role of these proteins as thiol oxidoreductases. When cells were infected with a mutant vaccinia virus in which the E10R gene encoding an ERV1/ALR family protein was repressed, the disulfide bonds of three other viral proteins-namely, the L1R and F9L proteins and the G4L glutaredoxin-were completely reduced. The same outcome occurred when Cys-43 or Cys-46, the putative redox cysteines of the E10R protein, was mutated to serine. These two cysteines were disulfide bonded during a normal virus infection but not if the synthesis of other viral late proteins was inhibited or the E10R protein was expressed by itself in uninfected cells, suggesting a requirement for an upstream viral thiol oxidoreductase. Remarkably, the cysteine-containing domains of the E10R and L1R viral membrane proteins and the glutaredoxin are in the cytoplasm, in which assembly of vaccinia virions occurs, rather than in the oxidizing environment of the endoplasmic reticulum. These data indicated a viral pathway of disulfide bond formation in which the E10R protein has a central role. By extension, the ERV1/ALR family may represent a ubiquitous class of cellular thiol oxidoreductases that interact with glutaredoxins or thioredoxins.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11035794</PMID>
<DateCompleted>
<Year>2000</Year>
<Month>11</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>08</Month>
<Day>16</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0027-8424</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>97</Volume>
<Issue>22</Issue>
<PubDate>
<Year>2000</Year>
<Month>Oct</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation.</ArticleTitle>
<Pagination>
<MedlinePgn>12068-73</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Proteins of the ERV1/ALR family are encoded by all eukaryotes and cytoplasmic DNA viruses for which substantial sequence information is available. Nevertheless, the roles of these proteins are imprecisely known. Multiple alignments of ERV1/ALR proteins indicated an invariant C-X-X-C motif, but no similarity to the thioredoxin fold was revealed by secondary structure predictions. We chose a virus model to investigate the role of these proteins as thiol oxidoreductases. When cells were infected with a mutant vaccinia virus in which the E10R gene encoding an ERV1/ALR family protein was repressed, the disulfide bonds of three other viral proteins-namely, the L1R and F9L proteins and the G4L glutaredoxin-were completely reduced. The same outcome occurred when Cys-43 or Cys-46, the putative redox cysteines of the E10R protein, was mutated to serine. These two cysteines were disulfide bonded during a normal virus infection but not if the synthesis of other viral late proteins was inhibited or the E10R protein was expressed by itself in uninfected cells, suggesting a requirement for an upstream viral thiol oxidoreductase. Remarkably, the cysteine-containing domains of the E10R and L1R viral membrane proteins and the glutaredoxin are in the cytoplasm, in which assembly of vaccinia virions occurs, rather than in the oxidizing environment of the endoplasmic reticulum. These data indicated a viral pathway of disulfide bond formation in which the E10R protein has a central role. By extension, the ERV1/ALR family may represent a ubiquitous class of cellular thiol oxidoreductases that interact with glutaredoxins or thioredoxins.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Senkevich</LastName>
<ForeName>T G</ForeName>
<Initials>TG</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>White</LastName>
<ForeName>C L</ForeName>
<Initials>CL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Koonin</LastName>
<ForeName>E V</ForeName>
<Initials>EV</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Moss</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004268">DNA-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004220">Disulfides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C120898">KMT2D protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009363">Neoplasm Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.-</RegistryNumber>
<NameOfSubstance UI="D050862">Oxidoreductases Acting on Sulfur Group Donors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.3.2</RegistryNumber>
<NameOfSubstance UI="C073790">ERV1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004268" MajorTopicYN="N">DNA-Binding Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004220" MajorTopicYN="N">Disulfides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="Y">Mitochondrial Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009363" MajorTopicYN="Y">Neoplasm Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016366" MajorTopicYN="N">Open Reading Frames</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050862" MajorTopicYN="N">Oxidoreductases Acting on Sulfur Group Donors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="Y">Saccharomyces cerevisiae Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014616" MajorTopicYN="N">Vaccinia virus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2000</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2000</Year>
<Month>10</Month>
<Day>18</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11035794</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.210397997</ArticleId>
<ArticleId IdType="pii">210397997</ArticleId>
<ArticleId IdType="pmc">PMC17295</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Nov 5;274(45):31759-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1998;32:163-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9928478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13703-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ital J Gastroenterol Hepatol. 1999 Aug-Sep;31(6):494-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10575569</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2000 Oct;74(19):9175-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1981 Aug;113(1):277-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7269243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1986 Nov;83(21):8122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3095828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1987 Feb;61(2):395-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3806791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7060-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1496000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Apr 5;268(10):7585-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8463289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Dec 10;262(5140):1744-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8259521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1994 Feb;10(1):53-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8193956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1994 Jun;75 ( Pt 6):1479-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8207414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8142-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8058770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1994 Jul;26(1):15-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7954891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1995 May 1;364(1):55-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7750543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1995 Aug 1;211(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7645236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27415-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1996 May;70(5):2797-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8627754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Jun 15;220(2):491-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8661400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1996 Dec 15;226(2):408-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8955061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1997 Jun 23;233(1):19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9201214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1997 Jul 18;270(3):471-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9237912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9342327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 1998 Dec 15;54(3):460-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9878249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1999 Jan 25;144(2):267-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9922453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1999 Oct;4(4):469-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10549279</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Maryland</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Koonin, E V" sort="Koonin, E V" uniqKey="Koonin E" first="E V" last="Koonin">E V Koonin</name>
<name sortKey="Moss, B" sort="Moss, B" uniqKey="Moss B" first="B" last="Moss">B. Moss</name>
<name sortKey="White, C L" sort="White, C L" uniqKey="White C" first="C L" last="White">C L White</name>
</noCountry>
<country name="États-Unis">
<region name="Maryland">
<name sortKey="Senkevich, T G" sort="Senkevich, T G" uniqKey="Senkevich T" first="T G" last="Senkevich">T G Senkevich</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001080 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001080 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11035794
   |texte=   A viral member of the ERV1/ALR protein family participates in a cytoplasmic pathway of disulfide bond formation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11035794" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020